A multiscale numerical method for the heterogeneous cable equation
نویسندگان
چکیده
Several interesting problems in neuroscience are of multiscale type, i.e. possess different temporal and spatial scales that cannot be disregarded. Such characteristics impose severe burden to numerical simulations since the need to resolve small scale features pushes the computational costs to unreasonable levels. Classical numerical methods that do not resolve the small scales suffer from This paper presents an innovative numerical method of multiscale type that ameliorates these maladies. As an example we consider the case of a cable equation modeling heterogeneous dendrites. Our method is not only easy to parallelize, but it is also nodally exact, i.e., it matches the values of the exact solution at every node of the discretization mesh, for a class of problems. To show the validity of our scheme under different physiological regimes, we describe how the model behaves whenever the dendrites are thin or long, or the longitudinal conductance is small. We also consider the case of a large number of synapses and of large or low membrane conductance. & 2011 Elsevier B.V. All rights reserved.
منابع مشابه
Implicit RBF Meshless Method for the Solution of Two-dimensional Variable Order Fractional Cable Equation
In the present work, the numerical solution of two-dimensional variable-order fractional cable (VOFC) equation using meshless collocation methods with thin plate spline radial basis functions is considered. In the proposed methods, we first use two schemes of order O(τ2) for the time derivatives and then meshless approach is applied to the space component. Numerical results obtained ...
متن کاملNonlinear Cable equation, Fractional differential equation, Radial point interpolation method, Meshless local Petrov – Galerkin, Stability analysis
The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensio...
متن کاملAn Adaptive Multiscale Method for Simulation of Fluid Flow in Heterogeneous Porous Media
Several multiscale methods for elliptic problems that provide high resolution velocity fields at low computational cost have been applied to porous media flow problems. However, to achieve enhanced accuracy in the flow simulation, the numerical scheme for modeling the transport must account for the fine scale structures in the velocity field. To solve the transport equation on the fine scale wi...
متن کاملFinite Element Heterogeneous Multiscale Method for the Wave Equation: Long Time Effects∗
A new finite element heterogeneous multiscale method (FE-HMM) is proposed for the numerical solution of the wave equation over long times in a rapidly varying medium. Our new FE-HMM-L method not only captures the short-time behavior of the wave field, well described by classical homogenization theory, but also more subtle long-time dispersive effects, both at a computational cost independent of...
متن کاملA FEM Multiscale Homogenization Procedure using Nanoindentation for High Performance Concrete
This paper aims to develop a numerical multiscale homogenization method for prediction of elasto-viscoplastic properties of a high performance concrete (HPC). The homogenization procedure is separated into two-levels according to the microstructure of the HPC: the mortar or matrix level and the concrete level. The elasto-viscoplastic behavior of individual microstructural phases of the matrix a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 77 شماره
صفحات -
تاریخ انتشار 2012